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Abstract—A new version of accelerated gradient descent is proposed. The method does not require any a pri-
ori information on the objective function, uses a linesearch procedure for convergence acceleration in prac-
tice, converge according to well-known lower bounds for both convex and nonconvex objective functions,
and has primal-dual properties. A universal version of this method is also described.
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In the late 1980s, A.S. Nemirovski showed that
auxiliary low-dimensional optimization does not
improve the theoretical worst-case rate of convergence
of a first-order optimal gradient-type method for
smooth convex minimization problems [1]. However,
in practice, accelerated methods with linesearch (in
particular, conjugate gradient methods) are usually
more efficient than their fixed-stepsize counterparts
in terms of the number of iterations. Moreover, such
procedures have been successfully applied to noncon-
vex optimization problems [2]. Unfortunately, it is also
well known that the gain in performance due to the use
of linesearch is significantly reduced by the computa-
tional complexity of such procedures. It was noted in
[3] that, for problems of a certain type frequently
occurring in solving dual problems, the complexity of
executing a linesearch step nearly coincides with the
complexity of a usual gradient step. This fact motivates
the study of methods with linesearch and their primal-
dual properties [4—8].

Consider the minimization problem

f(x) > min.

xeR"

Its solution is denoted by x:. Assume that the objective
function is differentiable and its gradient satisfies the

Lipschitz condition with a constant L: for all x, ye R",
IV () = Vf ()l < Llx =y

We introduce an estimating sequence {y,(x)} [1, 4, 9,
10] and a sequence of coefficients {4, }:

k
L) =D @, ) + (V) x =y,
i=0

Wi (X) = L, (x) + Wo(x)
=W (X) + @ ) + (VA5 x =y,
A, = 0.

Let us describe an accelerated gradient method
(AGM) with single linesearch.

A = A + @y,
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Algorithm 1: AGM

Input: X = VO, L, N
Output: xN

1:k=0

2:while kK < N —1do

3: B, =argmin f(v* +B(x* —v"))
Befo.1]

4: yk =vF+ Bk(xk - Vk)
5. k2 yk _%Vf(yk)

2

. 1
6: Choose a,,, by solving L =
: Ao L

7o V= —a VG

8 k=k+1
9: end while

>v'! =argminy, ,(x)

xeR"

The main difference of this algorithm from well-
known similar accelerated gradient methods [4, 10, 11]
is the stepsize selection in line 3. The previous algo-

rithms used a fixed stepsize (e.g., B, = L).

k+2

Instead of Step 5, one can use different stepsize
selection procedures, such as the Armijo rule [2] and
its modern analogues (as in the universal fast gradient
method [12]). The version of the method using exact
linesearch for stepsize selection will be referred to as
ALSM.

Algorithm 2: ALSM

Input: x'=v°
Output: xV
1:k=0
2:while k < N —1do

3: B, =argmin f(v* +Bx* —v"))
Be[o,1]
4y =V Bt - v
S: Iy, = argmin £(y" — AVF(Y"))
h>0

6 X =y —n VIO

2
7: Choose g, by solving f(y*) — 2L |VF (2 = £(x**)

2Ak+]
8 =t VPO

9: k=k+1
10:  end while

> v**! = argmin V(%)

xeR"

Let us formulate the main theoretical results for
these methods.

Theorem 1. For both AGM and ALSM,
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. 2L(f(x") = f(x))
Jmin [V < VR

If f(x) is convex, then, for both methods
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IVZGRR < <LR

2LR

M) = fx) <
where R = |xx — x°||,-
The function f(x) is called y-weakly quasiconvex

(where y e (0,1]) if, forall x e R",
Y (x) = fe)) SCVF(X), x — x4).

Note that y-weakly quasiconvex functions are uni-
modal, but, in the general case, are not convex. If f{x)
is y-weakly quasiconvex, the AGM method can be
considered with the following restarting procedure: as
soon as

FO) = flx) <

RPN
1 2)<f<x,> F)),

set x,-o = x,-N and restart the method.

Theorem 2. [ff(x) is y-weakly quasiconvex, then, for
the AGM and ALSM methods with the above-described
restarting procedure,

FGEY) = fx) = 0[%)

where R= max |x|, and {%'} is the sequence of

x:f(0)Sf(X)
points generated by the method in the course of all starts.
It can be shown that the SESOP method [3] can be
applied to y-weakly quasiconvex problems and has the
convergence rate estimate

FE) = fo) =0 [LRZJ
yN

with R =||x” — x4/, but it requires solving a three-
dimensional (possibly nonconvex) problem at every
iteration step. On the contrary, the AGM method
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requires only solving a minimization problem on an
interval.

Now we consider a convex optimization problem of
the form
®(z) = min. (D)
Az=0

In this case, a dual minimization problem can be con-
structed, namely,

f(x) = max{(x, 4z) — &(2)}
= (%, Az(x)) = 0(z(x)) — min.
According to the Demyanov—Danskin theorem,

Vf(x) = Az(x). Assume that 0(z) is [L-strongly convex.
Then Vf(x) satisfies the Lipschitz condition with the

constant L = w Let us apply our methods to
W

problem (1) with x” =v" = 0. Define

N-1
Y= ALZ 4a2(V").

N k=0
Theorem 3. For the AGM and ALSM methods,

2
7+ oY) < T
16LR
A7), S =5
2"l <525
where R = ||x«l|,.

Consider a class of problems in which the objective
function f{x) is not necessarily smooth. Let Vf(x)
denote some subgradient of f{x). Assume that Vf(x)
satisfies the Holder condition: for all x,y € R" and
some u € [0,1],

IVf(») = Vil < M, [k =y

The following ULSM method can be proposed for
solving problems of this class.

Algorithm 3: ULSM

Input: Initial point X = vo, accuracy €
Output: xV

1:£k=0

2:while k < N —1do

3: B, =argmin f(v* +B(x* —v"))
Befo.1]

4: Yy =vE+B.(x* —vH)
5: ., =argmin f(yk
h=0

k+1
6: x

=" — e VFOS)
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— WV (")), where (VF(y*),v = ¥y > 0
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2
7. Choose ay,, by solving f(x""") = () —;:—+1||Vf(yk)||§ + S
k+1

8 v =v' - a,VOH

9: k=k+1
10: end while

244,

> v¥*! = argmin W (X)

xeR"

Note that, in contrast to other universal methods
[12, 13], this one does not require estimating the nec-
essary stepsize in an inner loop. This leads to a some-
what better estimate for the rate of convergence and,
on average, to a smaller number of oracle calls per iter-
ation step.

Theorem 4. If f(x) is convex and its subgradient sat-
isfies the Holder condition, then

1
24y

JICANAED)

£
b — x°5 + 5

i.e., the method generates an €-accurate solution after N
iterations, where

1-v. —2 242y
N < inf 2[—1”}”” My =3y g
velon "L 4y €

with R = |jx, — x*||,.

If the problem under consideration is strongly con-
vex with a given constant L, then use of the estimating
sequence

Wi (X) = [(X) + Yo(x)
V0 + i {01+ (V70,3 + B -
leads to optimal (up to a multiplicative constant) ana-

logues of the above-described methods in the class of
strongly convex problems.
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