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Abstract—A new version of accelerated gradient descent is proposed. The method does not require any a pri-
ori information on the objective function, uses a linesearch procedure for convergence acceleration in prac-
tice, converge according to well-known lower bounds for both convex and nonconvex objective functions,
and has primal-dual properties. A universal version of this method is also described.

DOI: 10.1134/S1064562419020042
In the late 1980s, A.S. Nemirovski showed that
auxiliary low-dimensional optimization does not
improve the theoretical worst-case rate of convergence
of a first-order optimal gradient-type method for
smooth convex minimization problems [1]. However,
in practice, accelerated methods with linesearch (in
particular, conjugate gradient methods) are usually
more efficient than their fixed-stepsize counterparts
in terms of the number of iterations. Moreover, such
procedures have been successfully applied to noncon-
vex optimization problems [2]. Unfortunately, it is also
well known that the gain in performance due to the use
of linesearch is significantly reduced by the computa-
tional complexity of such procedures. It was noted in
[3] that, for problems of a certain type frequently
occurring in solving dual problems, the complexity of
executing a linesearch step nearly coincides with the
complexity of a usual gradient step. This fact motivates
the study of methods with linesearch and their primal-
dual properties [4–8].

Consider the minimization problem
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Its solution is denoted by . Assume that the objective
function is differentiable and its gradient satisfies the
Lipschitz condition with a constant L: for all x, ,

We introduce an estimating sequence  [1, 4, 9,
10] and a sequence of coefficients :

Let us describe an accelerated gradient method
(AGM) with single linesearch.
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Algorithm 1: AGM

Input: , , 

Output: 
1: k = 0
2: while  do

3:

4:

5:

6: Choose  by solving 

7:   ▷

8:
9: end while

The main difference of this algorithm from well-
known similar accelerated gradient methods [4, 10, 11]
is the stepsize selection in line 3. The previous algo-

rithms used a fixed stepsize (e.g., ).

Instead of Step 5, one can use different stepsize
selection procedures, such as the Armijo rule [2] and
its modern analogues (as in the universal fast gradient
method [12]). The version of the method using exact
linesearch for stepsize selection will be referred to as
ALSM.

Algorithm 2: ALSM

Input: 
Output: xN

1: k = 0
2: while  do

3:

4:

5:

6:

7: Choose  by solving 

8:          ▷ 

9:
10: end while

Let us formulate the main theoretical results for
these methods.

Theorem 1. For both AGM and ALSM, If f(x) is convex, then, for both methods
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where .
The function  is called -weakly quasiconvex

(where ) if, for all ,

Note that γ-weakly quasiconvex functions are uni-
modal, but, in the general case, are not convex. If f(x)
is γ-weakly quasiconvex, the AGM method can be
considered with the following restarting procedure: as
soon as

set  and restart the method.
Theorem 2. If f(x) is γ-weakly quasiconvex, then, for

the AGM and ALSM methods with the above-described
restarting procedure,

where  and  is the sequence of
points generated by the method in the course of all starts.

It can be shown that the SESOP method [3] can be
applied to γ-weakly quasiconvex problems and has the
convergence rate estimate

with , but it requires solving a three-
dimensional (possibly nonconvex) problem at every
iteration step. On the contrary, the AGM method

requires only solving a minimization problem on an
interval.

Now we consider a convex optimization problem of
the form

(1)

In this case, a dual minimization problem can be con-
structed, namely,

According to the Demyanov–Danskin theorem,
 = Az(x). Assume that φ(z) is -strongly convex.

Then  satisfies the Lipschitz condition with the

constant . Let us apply our methods to

problem (1) with . Define

Theorem 3. For the AGM and ALSM methods,

where .
Consider a class of problems in which the objective

function f(x) is not necessarily smooth. Let 
denote some subgradient of f(x). Assume that 
satisfies the Hölder condition: for all  and
some ,

The following ULSM method can be proposed for
solving problems of this class.

Algorithm 3: ULSM

Input: Initial point , accuracy 
Output: xN

1: k = 0
2: while  do

3:

4:

5: , where 

6:
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7: Choose  by solving 

8:         ▷ 

9: k = k + 1

10: end while

Note that, in contrast to other universal methods
[12, 13], this one does not require estimating the nec-
essary stepsize in an inner loop. This leads to a some-
what better estimate for the rate of convergence and,
on average, to a smaller number of oracle calls per iter-
ation step.

Theorem 4. If  is convex and its subgradient sat-
isfies the Hölder condition, then

i.e., the method generates an ε-accurate solution after N
iterations, where

with .

If the problem under consideration is strongly con-
vex with a given constant , then use of the estimating
sequence

leads to optimal (up to a multiplicative constant) ana-
logues of the above-described methods in the class of
strongly convex problems.
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