Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems

S. V. Guminov ${ }^{a, *}$, Yu. E. Nesterov ${ }^{b, c}$, P. E. Dvurechensky ${ }^{d}$, and A. V. Gasnikov ${ }^{a, d}$
Presented by Academician of the RAS K.V. Rudakov September 10, 2018

Received September 27, 2018

Abstract

A new version of accelerated gradient descent is proposed. The method does not require any a priori information on the objective function, uses a linesearch procedure for convergence acceleration in practice, converge according to well-known lower bounds for both convex and nonconvex objective functions, and has primal-dual properties. A universal version of this method is also described.

DOI: 10.1134/S1064562419020042

In the late 1980s, A.S. Nemirovski showed that auxiliary low-dimensional optimization does not improve the theoretical worst-case rate of convergence of a first-order optimal gradient-type method for smooth convex minimization problems [1]. However, in practice, accelerated methods with linesearch (in particular, conjugate gradient methods) are usually more efficient than their fixed-stepsize counterparts in terms of the number of iterations. Moreover, such procedures have been successfully applied to nonconvex optimization problems [2]. Unfortunately, it is also well known that the gain in performance due to the use of linesearch is significantly reduced by the computational complexity of such procedures. It was noted in [3] that, for problems of a certain type frequently occurring in solving dual problems, the complexity of executing a linesearch step nearly coincides with the complexity of a usual gradient step. This fact motivates the study of methods with linesearch and their primaldual properties [4-8].

Consider the minimization problem

$$
f(x) \rightarrow \min _{x \in \mathbb{R}^{n}} .
$$

Its solution is denoted by x_{*}. Assume that the objective function is differentiable and its gradient satisfies the
Lipschitz condition with a constant L : for all $x, y \in \mathbb{R}^{n}$,

$$
\|\nabla f(y)-\nabla f(x)\|_{2} \leq L\|x-y\|_{2} .
$$

We introduce an estimating sequence $\left\{\psi_{k}(x)\right\}[1,4,9$, 10] and a sequence of coefficients $\left\{A_{k}\right\}$:

$$
\begin{gathered}
l_{k}(x)=\sum_{i=0}^{k} a_{i+1}\left\{f\left(y^{i}\right)+\left\langle\nabla f\left(y^{i}\right), x-y^{i}\right\rangle\right\}, \\
\psi_{k+1}(x)=l_{k}(x)+\psi_{0}(x) \\
=\psi_{k}(x)+a_{k+1}\left\{f\left(y^{k}\right)+\left\langle\nabla f\left(y^{k}\right), x-y^{k}\right\rangle\right\}, \\
A_{k+1}=A_{k}+a_{k+1}, \quad A_{0}=0 .
\end{gathered}
$$

Let us describe an accelerated gradient method (AGM) with single linesearch.

[^0]
Algorithm 1: AGM

```
Input: \(x^{0}=v^{0}, L, N\)
Output: \(x^{N}\)
    \(1: k=0\)
    2: while \(k \leq N-1\) do
    3: \(\quad \beta_{k}=\underset{\beta \in[0,1]}{\operatorname{argmin}} f\left(v^{k}+\beta\left(x^{k}-v^{k}\right)\right)\)
    4: \(\quad y^{k}=v^{k}+\beta_{k}\left(x^{k}-v^{k}\right)\)
    5: \(\quad x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)\)
    6: Choose \(a_{k+1}\) by solving \(\frac{a_{k+1}^{2}}{A_{k+1}}=\frac{1}{L}\)
    7: \(\quad v^{k+1}=v^{k}-a_{k+1} \nabla f\left(y^{k}\right)\)
    8: \(\quad k=k+1\)
    9: end while
```

The main difference of this algorithm from wellknown similar accelerated gradient methods [4, 10, 11] is the stepsize selection in line 3. The previous algorithms used a fixed stepsize (e.g., $\beta_{k}=\frac{k}{k+2}$).

Instead of Step 5, one can use different stepsize selection procedures, such as the Armijo rule [2] and its modern analogues (as in the universal fast gradient method [12]). The version of the method using exact linesearch for stepsize selection will be referred to as ALSM.

Algorithm 2: ALSM

Input: $x^{0}=v^{0}$
Output: x^{N}
$1: k=0$
2: while $k \leq N-1$ do
3: $\quad \beta_{k}=\underset{\beta \in[0,1]}{\operatorname{argmin}} f\left(v^{k}+\beta\left(x^{k}-v^{k}\right)\right)$
4: $\quad y^{k}=v^{k}+\beta_{k}\left(x^{k}-v^{k}\right)$
5: $\quad h_{k+1}=\underset{h \geq 0}{\operatorname{argmin}} f\left(y^{k}-h \nabla f\left(y^{k}\right)\right)$
6: $\quad x^{k+1}=y^{k}-h_{k+1} \nabla f\left(y^{k}\right)$
7: Choose a_{k+1} by solving $f\left(y^{k}\right)-\frac{a_{k+1}^{2}}{2 A_{k+1}}\left\|\nabla f\left(y^{k}\right)\right\|_{2}^{2}=f\left(x^{k+1}\right)$
8: $\quad v^{k+1}=v^{k}-a_{k+1} \nabla f\left(y^{k}\right)$
$\triangleright V^{k+1}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \psi_{k+1}(x)$
9: $\quad k=k+1$
10: end while

Let us formulate the main theoretical results for these methods.

Theorem 1. For both AGM and ALSM,

$$
\min _{k=0, \ldots, N}\left\|\nabla f\left(y^{k}\right)\right\|_{2}^{2} \leq \frac{2 L\left(f\left(x^{0}\right)-f\left(x_{*}\right)\right)}{N} .
$$

$$
\begin{gathered}
\min _{k=[N / 2], \ldots, N}\left\|\nabla f\left(y^{k}\right)\right\|_{2}^{2} \leq \frac{32 L^{2} R^{2}}{N^{3}} \\
f\left(x^{N}\right)-f\left(x_{*}\right) \leq \frac{2 L R^{2}}{N^{2}}
\end{gathered}
$$

where $R=\left\|x_{*}-x^{0}\right\|_{2}$.
The function $f(x)$ is called γ-weakly quasiconvex (where $\gamma \in(0,1])$ if, for all $x \in \mathbb{R}^{n}$,

$$
\gamma\left(f(x)-f\left(x_{*}\right)\right) \leq\left\langle\nabla f(x), x-x_{*}\right\rangle
$$

Note that γ-weakly quasiconvex functions are unimodal, but, in the general case, are not convex. If $f(x)$ is γ-weakly quasiconvex, the AGM method can be considered with the following restarting procedure: as soon as

$$
f\left(x_{i}^{N}\right)-f\left(x_{*}\right) \leq\left(1-\frac{\gamma}{2}\right)\left(f\left(x_{i}^{0}\right)-f\left(x_{*}\right)\right)
$$

set $x_{i+1}^{0}=x_{i}^{N}$ and restart the method.
Theorem 2. Iff (x) is γ-weakly quasiconvex, then, for the AGM and ALSM methods with the above-described restarting procedure,

$$
f\left(\tilde{x}^{N}\right)-f\left(x_{*}\right)=O\left(\frac{L R^{2}}{\gamma^{3} N^{2}}\right)
$$

where $R=\max _{x: f(x) \leq f\left(x_{0}\right)}\|x\|_{2}$ and $\left\{\tilde{x}^{i}\right\}$ is the sequence of points generated by the method in the course of all starts.

It can be shown that the SESOP method [3] can be applied to γ-weakly quasiconvex problems and has the convergence rate estimate

$$
f\left(\tilde{x}^{N}\right)-f\left(x_{*}\right)=O\left(\frac{L R^{2}}{\gamma^{2} N^{2}}\right)
$$

with $R=\left\|x^{0}-x_{*}\right\|_{2}$, but it requires solving a threedimensional (possibly nonconvex) problem at every iteration step. On the contrary, the AGM method
requires only solving a minimization problem on an interval.

Now we consider a convex optimization problem of the form

$$
\begin{equation*}
\phi(z) \rightarrow \min _{A z=0} \tag{1}
\end{equation*}
$$

In this case, a dual minimization problem can be constructed, namely,

$$
\begin{aligned}
& f(x)=\max _{z}\{\langle x, A z\rangle-\phi(z)\} \\
= & \langle x, A z(x)\rangle-\phi(z(x)) \rightarrow \min _{x \in \mathbb{R}}
\end{aligned}
$$

According to the Demyanov-Danskin theorem, $\nabla f(x)=A z(x)$. Assume that $\phi(z)$ is μ-strongly convex. Then $\nabla f(x)$ satisfies the Lipschitz condition with the constant $L=\frac{\lambda_{\text {max }}(A)}{\mu}$. Let us apply our methods to problem (1) with $x^{0}=v^{0}=0$. Define

$$
\tilde{z}^{N}=\frac{1}{A_{N}} \sum_{k=0}^{N-1} a_{k+1} z\left(y^{k}\right)
$$

Theorem 3. For the AGM and ALSM methods,

$$
\begin{gathered}
f\left(x^{N}\right)+\phi\left(\tilde{z}^{N}\right) \leq \frac{16 L R^{2}}{N^{2}} \\
\left\|A \tilde{z}^{N}\right\|_{2} \leq \frac{16 L R}{N^{2}}
\end{gathered}
$$

where $R=\left\|x_{*}\right\|_{2}$.
Consider a class of problems in which the objective function $f(x)$ is not necessarily smooth. Let $\nabla f(x)$ denote some subgradient of $f(x)$. Assume that $\nabla f(x)$ satisfies the Hölder condition: for all $x, y \in \mathbb{R}^{n}$ and some $u \in[0,1]$,

$$
\|\nabla f(y)-\nabla f(x)\|_{2} \leq M_{v}\|x-y\|_{2}^{v}
$$

The following ULSM method can be proposed for solving problems of this class.

```
Algorithm 3: ULSM
Input: Initial point \(x^{0}=v^{0}\), accuracy \(\varepsilon\)
Output: \(x^{N}\)
    \(1: k=0\)
    2: while \(k \leq N-1\) do
    3: \(\quad \beta_{k}=\underset{\beta \in[0,1]}{\operatorname{argmin}} f\left(v^{k}+\beta\left(x^{k}-v^{k}\right)\right)\)
    4: \(\quad y^{k}=v^{k}+\beta_{k}\left(x^{k}-v^{k}\right)\)
    5: \(\quad h_{k+1}=\underset{h \geq 0}{\operatorname{argmin}} f\left(y^{k}-h \nabla f\left(y^{k}\right)\right)\), where \(\left\langle\nabla f\left(y^{k}\right), v^{k}-y^{k}\right\rangle \geq 0\)
    6: \(\quad x^{k+1}=y^{k}-h_{k+1} \nabla f\left(y^{k}\right)\)
```

```
7: Choose \(a_{k+1}\) by solving \(f\left(x^{k+1}\right)=f\left(y^{k}\right)-\frac{a_{k+1}^{2}}{2 A_{k+1}}\left\|\nabla f\left(y^{k}\right)\right\|_{2}^{2}+\frac{\varepsilon a_{k+1}}{2 A_{k+1}}\)
8: \(\quad v^{k+1}=v^{k}-a_{k+1} \nabla f\left(y^{k}\right)\)
9: \(k=k+1\)
10: end while
```

Note that, in contrast to other universal methods [12, 13], this one does not require estimating the necessary stepsize in an inner loop. This leads to a somewhat better estimate for the rate of convergence and, on average, to a smaller number of oracle calls per iteration step.

Theorem 4. If $f(x)$ is convex and its subgradient satisfies the Hölder condition, then

$$
f\left(x^{N}\right)-f\left(x_{*}\right) \frac{1}{2 A_{N}}\left\|x_{*}-x^{0}\right\|_{2}^{2}+\frac{\varepsilon}{2},
$$

i.e., the method generates an ε-accurate solution after N iterations, where

$$
N \leq \inf _{v \in[0,1]} 2\left[\frac{1-v}{1+v}\right]^{\frac{1-v}{1+3 v}}\left[\frac{M_{v}}{\varepsilon}\right]^{\frac{2}{1+3 v}} R^{\frac{2+2 v}{1+3 v}}
$$

with $R=\left\|x_{0}-x^{*}\right\|_{2}$.
If the problem under consideration is strongly convex with a given constant μ, then use of the estimating sequence

$$
\begin{gathered}
\psi_{k+1}(x)=l_{k}(x)+\psi_{0}(x) \\
=\psi_{k}(x)+a_{k+1}\left\{f\left(y^{k}\right)+\left\langle\nabla f\left(y^{k}\right), x-y^{k}\right\rangle+\frac{\mu}{2}\left\|x-y^{k}\right\|_{2}^{2}\right\}
\end{gathered}
$$

leads to optimal (up to a multiplicative constant) analogues of the above-described methods in the class of strongly convex problems.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 18-71-10108.

REFERENCES

1. Yu. E. Nesterov, Efficient Methods in Nonlinear Programming (Radio i Svyaz', Moscow, 1989) [in Russian].
2. R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, Math. Program. 107 (3), 391-408 (2006).
3. G. Narkiss and M. Zibulevsky, "Sequential subspace optimization method for large-scale unconstrained problems," Tech. Rep. CCIT No. 559 (Dep. Electr. Eng. Tech., Haifa, 2005).
4. Yu. Nesterov, Math. Program. 103 (1), 127-152 (2005).
5. Yu. Nesterov, Math. Program. 120 (1), 221-259 (2009).
6. P. Dvurechensky, A. Gasnikov, and A. Kroshnin, "Computational optimal transport: Complexity by accelerated gradient descent is better than by Sinkhorn's algorithm," Proceedings of the 35th International Conference on Machine Learning (PMLR, Stockholm, 2018), pp. 1367-1376.
7. P. Dvurechensky, A. Gasnikov, E. Gasnikova, S. Matsievsky, A. Rodomanov, and I. Usik, "Primal-dual method for searching equilibrium in hierarchical congestion population games," CEUR-WS Supplementary Proceedings of the 9th International Conference on Discrete Optimization and Operations Research and Scientific School (DOOR 2016) (Springer, Berlin, 2016), pp. 584-595. http://ceur-ws.org/Vol-1623.
8. A. Chernov, P. Dvurechensky, and A. Gasnikov, "Fast primal-dual gradient method for strongly convex minimization problems with linear constraints," Proceedings of the 9th International Conference on Discrete Optimization and Operations Research (DOOR 2016) (Springer, Berlin, 2016), pp. 391-403.
9. Yu. E. Nesterov, Dokl. Akad. Nauk SSSR 269 (3), 543-547 (1983).
10. Yu. E. Nesterov, Introduction to Convex Optimization (MTsNMO, Moscow, 2010) [in Russian].
11. Z. Allen-Zhu and L. Orecchia, "Linear coupling: An ultimate unification of gradient and mirror descent," Proceedings of the 8th Innovations in Theoretical Computer Science (Schloss Dagstuhl, Saarbrücken, 2017).
12. Yu. Nesterov, Math. Program. 152 (1-2), 381-404 (2015).
13. S. Guminov, A. Gasnikov, A. Anikin, and A. Gornov, "A universal modification of the linear coupling method," Optim. Methods Software (2019). doi 10.1080/10556788.2018.1517158

Translated by I. Ruzanova

[^0]: ${ }^{a}$ Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, 141700 Russia
 ${ }^{b}$ Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Louvain-la-Neuve, Belgium
 ${ }^{c}$ National Research University Higher School of Economics, Moscow, 101000 Russia
 ${ }^{d}$ Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
 *e-mail: sergey.guminov@phystech.edu

