= MATHEMATICS =

Accelerated Primal-Dual Gradient Descent with Linesearch for Convex, Nonconvex, and Nonsmooth Optimization Problems

S. V. Guminov^{*a*,*}, Yu. E. Nesterov^{*b*,*c*}, P. E. Dvurechensky^{*d*}, and A. V. Gasnikov^{*a*,*d*}

Presented by Academician of the RAS K.V. Rudakov September 10, 2018

Received September 27, 2018

Abstract—A new version of accelerated gradient descent is proposed. The method does not require any a priori information on the objective function, uses a linesearch procedure for convergence acceleration in practice, converge according to well-known lower bounds for both convex and nonconvex objective functions, and has primal-dual properties. A universal version of this method is also described.

DOI: 10.1134/S1064562419020042

In the late 1980s, A.S. Nemirovski showed that auxiliary low-dimensional optimization does not improve the theoretical worst-case rate of convergence of a first-order optimal gradient-type method for smooth convex minimization problems [1]. However, in practice, accelerated methods with linesearch (in particular, conjugate gradient methods) are usually more efficient than their fixed-stepsize counterparts in terms of the number of iterations. Moreover, such procedures have been successfully applied to nonconvex optimization problems [2]. Unfortunately, it is also well known that the gain in performance due to the use of linesearch is significantly reduced by the computational complexity of such procedures. It was noted in [3] that, for problems of a certain type frequently occurring in solving dual problems, the complexity of executing a linesearch step nearly coincides with the complexity of a usual gradient step. This fact motivates the study of methods with linesearch and their primaldual properties [4–8].

Consider the minimization problem

$$f(x)\to\min_{x\in\mathbb{R}^n}.$$

Its solution is denoted by x_* . Assume that the objective function is differentiable and its gradient satisfies the Lipschitz condition with a constant *L*: for all $x, y \in \mathbb{R}^n$,

$$\|\nabla f(y) - \nabla f(x)\|_2 \le L \|x - y\|_2.$$

We introduce an estimating sequence $\{\psi_k(x)\}$ [1, 4, 9, 10] and a sequence of coefficients $\{A_k\}$:

$$l_{k}(x) = \sum_{i=0}^{k} a_{i+1} \{ f(y^{i}) + \langle \nabla f(y^{i}), x - y^{i} \rangle \},$$

$$\psi_{k+1}(x) = l_{k}(x) + \psi_{0}(x)$$

$$= \psi_{k}(x) + a_{k+1} \{ f(y^{k}) + \langle \nabla f(y^{k}), x - y^{k} \rangle \},$$

$$A_{k+1} = A_{k} + a_{k+1}, \quad A_{0} = 0.$$

Let us describe an accelerated gradient method (AGM) with single linesearch.

^a Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, 141700 Russia

^b Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Louvain-la-Neuve, Belgium

^c National Research University Higher School of Economics, Moscow, 101000 Russia

^d Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia

^{*}e-mail: sergey.guminov@phystech.edu

Algorithm 1: AGM

Input: $x^0 = v^0, L, N$
Output: x^N
1: k = 0
2: while $k \leq N - 1$ do
3: $\beta_k = \operatorname*{argmin}_{\beta \in [0,1]} f(v^k + \beta(x^k - v^k))$
4: $y^k = v^k + \beta_k (x^k - v^k)$
5: $x^{k+1} = y^k - \frac{1}{L} \nabla f(y^k)$
6: Choose a_{k+1} by solving $\frac{a_{k+1}^2}{A_{k+1}} = \frac{1}{L}$
7: $v^{k+1} = v^k - a_{k+1} \nabla f(y^k)$
8: $k = k + 1$
9: end while

The main difference of this algorithm from wellknown similar accelerated gradient methods [4, 10, 11] is the stepsize selection in line 3. The previous algorithms used a fixed stepsize (e.g., $\beta_k = \frac{k}{k+2}$).

Instead of Step 5, one can use different stepsize selection procedures, such as the Armijo rule [2] and its modern analogues (as in the universal fast gradient method [12]). The version of the method using exact linesearch for stepsize selection will be referred to as ALSM.

 $\triangleright v^{k+1} = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \Psi_{k+1}(x)$

Algorithm 2: ALSM

Input:
$$x^{0} = v^{0}$$

Output: x^{N}
1: $k = 0$
2: while $k \le N - 1$ do
3: $\beta_{k} = \underset{\beta \in [0,1]}{\operatorname{argmin}} f(v^{k} + \beta(x^{k} - v^{k}))$
4: $y^{k} = v^{k} + \beta_{k}(x^{k} - v^{k})$
5: $h_{k+1} = \underset{h \ge 0}{\operatorname{argmin}} f(y^{k} - h\nabla f(y^{k}))$
6: $x^{k+1} = y^{k} - h_{k+1}\nabla f(y^{k})$
7: Choose a_{k+1} by solving $f(y^{k}) - \frac{a_{k+1}^{2}}{2A_{k+1}} ||\nabla f(y^{k})||_{2}^{2} = f(x^{k+1})$
8: $v^{k+1} = v^{k} - a_{k+1}\nabla f(y^{k})$ $\triangleright v^{k+1} = \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \Psi_{k+1}(x)$
9: $k = k + 1$
10: end while

Let us formulate the main theoretical results for these methods.

Theorem 1. For both AGM and ALSM,

$$\min_{\substack{k=0,\ldots,N}} \|\nabla f(y^k)\|_2^2 \le \frac{2L(f(x^0) - f(x_*))}{N}.$$

If $f(x)$ is convex, then, for both methods

DOKLADY MATHEMATICS Vol. 99 2019 No. 2

$$\min_{k \in [N/2],...,N} \|\nabla f(y^k)\|_2^2 \le \frac{32L^2 R^2}{N^3},$$
$$f(x^N) - f(x_*) \le \frac{2LR^2}{N^2},$$

where $R = ||x_* - x^0||_2$.

The function f(x) is called γ -weakly quasiconvex (where $\gamma \in (0, 1]$) if, for all $x \in \mathbb{R}^n$,

$$\gamma(f(x) - f(x_*)) \le \langle \nabla f(x), x - x_* \rangle.$$

Note that γ -weakly quasiconvex functions are unimodal, but, in the general case, are not convex. If f(x) is γ -weakly quasiconvex, the AGM method can be considered with the following restarting procedure: as soon as

$$f(x_i^N) - f(x_*) \le \left(1 - \frac{\gamma}{2}\right) (f(x_i^0) - f(x_*)),$$

set $x_{i+1}^0 = x_i^N$ and restart the method.

Theorem 2. If f(x) is γ -weakly quasiconvex, then, for the AGM and ALSM methods with the above-described restarting procedure,

$$f(\tilde{x}^N) - f(x_*) = O\left(\frac{LR^2}{\gamma^3 N^2}\right),$$

where $R = \max_{x:f(x) \le f(x_0)} ||x||_2$ and $\{\tilde{x}^i\}$ is the sequence of points generated by the method in the course of all starts.

It can be shown that the SESOP method [3] can be applied to γ -weakly quasiconvex problems and has the convergence rate estimate

$$f(\tilde{x}^{N}) - f(x_{*}) = O\left(\frac{LR^{2}}{\gamma^{2}N^{2}}\right)$$

with $R = ||x^0 - x_*||_2$, but it requires solving a threedimensional (possibly nonconvex) problem at every iteration step. On the contrary, the AGM method requires only solving a minimization problem on an interval.

Now we consider a convex optimization problem of the form

$$\phi(z) \to \min_{A^{z=0}}.$$
 (1)

In this case, a dual minimization problem can be constructed, namely,

$$f(x) = \max_{z} \{ \langle x, Az \rangle - \phi(z) \}$$

= $\langle x, Az(x) \rangle - \phi(z(x)) \rightarrow \min_{x \in \mathbb{R}}.$

According to the Demyanov–Danskin theorem, $\nabla f(x) = Az(x)$. Assume that $\phi(z)$ is μ -strongly convex. Then $\nabla f(x)$ satisfies the Lipschitz condition with the constant $L = \frac{\lambda_{max}(A)}{\mu}$. Let us apply our methods to problem (1) with $x^0 = y^0 = 0$. Define

$$\tilde{z}^N = \frac{1}{A_N} \sum_{k=0}^{N-1} a_{k+1} z(y^k).$$

Theorem 3. For the AGM and ALSM methods,

$$f(x^{N}) + \phi(\tilde{z}^{N}) \le \frac{16LR^{2}}{N^{2}},$$
$$\|A\tilde{z}^{N}\|_{2} \le \frac{16LR}{N^{2}},$$

where $R = ||x_*||_2$.

Consider a class of problems in which the objective function f(x) is not necessarily smooth. Let $\nabla f(x)$ denote some subgradient of f(x). Assume that $\nabla f(x)$ satisfies the Hölder condition: for all $x, y \in \mathbb{R}^n$ and some $u \in [0,1]$,

$$\|\nabla f(y) - \nabla f(x)\|_2 \le M_v \|x - y\|_2^v$$

The following ULSM method can be proposed for solving problems of this class.

Algorithm 3: ULSM

Input: Initial point $x^0 = v^0$, accuracy ε Output: x^N 1: k = 02: while $k \le N - 1$ do 3: $\beta_k = \underset{\beta \in [0,1]}{\operatorname{argmin}} f(v^k + \beta(x^k - v^k))$ 4: $y^k = v^k + \beta_k(x^k - v^k)$ 5: $h_{k+1} = \underset{h \ge 0}{\operatorname{argmin}} f(y^k - h\nabla f(y^k))$, where $\langle \nabla f(y^k), v^k - y^k \rangle \ge 0$ 6: $x^{k+1} = y^k - h_{k+1} \nabla f(y^k)$

DOKLADY MATHEMATICS Vol. 99 No. 2 2019

7: Choose
$$a_{k+1}$$
 by solving $f(x^{k+1}) = f(y^k) - \frac{a_{k+1}^2}{2A_{k+1}} \|\nabla f(y^k)\|_2^2 + \frac{\varepsilon a_{k+1}}{2A_{k+1}}$
8: $v^{k+1} = v^k - a_{k+1} \nabla f(y^k)$ $\triangleright v^{k+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \Psi_{k+1}(x)$
9: $k = k + 1$
10: end while

Note that, in contrast to other universal methods [12, 13], this one does not require estimating the necessary stepsize in an inner loop. This leads to a somewhat better estimate for the rate of convergence and, on average, to a smaller number of oracle calls per iteration step.

Theorem 4. If f(x) is convex and its subgradient satisfies the Hölder condition, then

$$f(x^N) - f(x_*) \frac{1}{2A_N} ||x_* - x^0||_2^2 + \frac{\varepsilon}{2},$$

i.e., the method generates an ε -accurate solution after N iterations, where

$$N \leq \inf_{\mathbf{v} \in [0,1]} 2 \left[\frac{1-\mathbf{v}}{1+\mathbf{v}} \right]^{\frac{1-\mathbf{v}}{1+3\mathbf{v}}} \left[\frac{M_{\mathbf{v}}}{\varepsilon} \right]^{\frac{2}{1+3\mathbf{v}}} R^{\frac{2+2\mathbf{v}}{1+3\mathbf{v}}}$$

with $R = ||x_0 - x^*||_2$.

If the problem under consideration is strongly convex with a given constant μ , then use of the estimating sequence

$$\begin{aligned} \Psi_{k+1}(x) &= l_k(x) + \Psi_0(x) \\ &= \Psi_k(x) + a_{k+1} \bigg\{ f(y^k) + \langle \nabla f(y^k), x - y^k \rangle + \frac{\mu}{2} ||x - y^k||_2^2 \bigg\} \end{aligned}$$

leads to optimal (up to a multiplicative constant) analogues of the above-described methods in the class of strongly convex problems.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 18-71-10108.

REFERENCES

- 1. Yu. E. Nesterov, *Efficient Methods in Nonlinear Pro*gramming (Radio i Svyaz', Moscow, 1989) [in Russian].
- R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, Math. Program. **107** (3), 391–408 (2006).

- 4. Yu. Nesterov, Math. Program. **103** (1), 127–152 (2005).
- 5. Yu. Nesterov, Math. Program. **120** (1), 221–259 (2009).
- P. Dvurechensky, A. Gasnikov, and A. Kroshnin, "Computational optimal transport: Complexity by accelerated gradient descent is better than by Sinkhorn's algorithm," *Proceedings of the 35th International Conference on Machine Learning* (PMLR, Stockholm, 2018), pp. 1367–1376.
- P. Dvurechensky, A. Gasnikov, E. Gasnikova, S. Matsievsky, A. Rodomanov, and I. Usik, "Primal-dual method for searching equilibrium in hierarchical congestion population games," *CEUR-WS Supplementary Proceedings of the 9th International Conference on Discrete Optimization and Operations Research and Scientific School (DOOR 2016)* (Springer, Berlin, 2016), pp. 584–595. http://ceur-ws.org/Vol-1623.
- A. Chernov, P. Dvurechensky, and A. Gasnikov, "Fast primal-dual gradient method for strongly convex minimization problems with linear constraints," *Proceedings* of the 9th International Conference on Discrete Optimization and Operations Research (DOOR 2016) (Springer, Berlin, 2016), pp. 391–403.
- 9. Yu. E. Nesterov, Dokl. Akad. Nauk SSSR **269** (3), 543–547 (1983).
- 10. Yu. E. Nesterov, *Introduction to Convex Optimization* (MTsNMO, Moscow, 2010) [in Russian].
- 11. Z. Allen-Zhu and L. Orecchia, "Linear coupling: An ultimate unification of gradient and mirror descent," *Proceedings of the 8th Innovations in Theoretical Computer Science* (Schloss Dagstuhl, Saarbrücken, 2017).
- 12. Yu. Nesterov, Math. Program. **152** (1–2), 381–404 (2015).
- S. Guminov, A. Gasnikov, A. Anikin, and A. Gornov, "A universal modification of the linear coupling method," Optim. Methods Software (2019). doi 10.1080/10556788.2018.1517158

Translated by I. Ruzanova

DOKLADY MATHEMATICS Vol. 99 No. 2 2019